Created By : Abhinandan Kumar

Reviewed By : Rajashekhar Valipishetty

Last Updated : May 30, 2023


Enter the value of base radius(r)

Enter the Value of height(h)


If the cone Radius 9 centimeters by height 43 meters is 121772.6061695 centimeters2 or 12.1772606 meters2.


The surface area of a cone is equal to the area of the base plus the area of the cone. If the cone Radius 9 centimeters by height 43 meters is 121772.6061695 centimeters2 or 12.1772606 meters2.


    Surface Area of a Cone 9 cm by 43 m in other units

Value unit
1.2177261 km2
0.7566618 mi2
1217.7260617 m2
3995.1642444 ft2
47941.9709329 in2
1331.7214148 yd2
121772.6061695 cm2
1217726.061695 mm2

Steps:

Given that Base radius(r) = 9 cm and height(h) = 43 m

Surface Area of a Cone = $(π⋅(Radius))$⋅($(Radius)$ + $\sqrt{(Radius)^2+(Height)^2}$)

Substitute the values of the radius r = 9 cm and height h = 43 m into the formula. Pi (π) is approximately equal to 3.14 .

      Unit Conversion of 43 m = 4300.0 cm

43 Meters is 4300.0 Centimeters

To convert Meter to Centimeters

we know that, 1 Meter = 100 Centimeters

To convert Meter to Centimeters, multiply the kilometer value by 100

Result in Centimeters: 43 m × 100 × cm/m

Cancel The Comman factor of m

Result in Centimeters: (43 x 100 cm)

Multiply 43 into 100

Result in Centimeters: 4300.0 Centimeters

∴ 43 Meters = 4300.0 Centimeters


$(π⋅(9))$⋅ $(9$ + $\sqrt{(9)^2 + (4300.0)^2})$ cm

Move 9 to the left of π.

$(9π)$⋅$ (9$ + $\sqrt{(9)^2 + (4300.0)^2}$

Simplify each term

Raise 9 cm to the power of 2 and 4300.0 to the power of 2

$(9π)$⋅$ (9$ + $\sqrt{(81.0) + (18490000.0)}$ cm

Add 81.0 cm and 18490000.0 cm

$(9π)$ cm⋅$ (9$ + $\sqrt{(18490081.0)}$ cm

Multipy 9π cm and 9 cm

81.0π cm + (9π . $\sqrt{ 18490081.0 }$) cm


Put the value of $\sqrt{ 18490081.0 }$ = 4300.0094186 in formula

81.0π cm + (9π . 4300.0094186) cm

Mulitply the 9π and 4300.0094186

81.0π cm + (38700.0847673π)

Add 81.0π cm and 38700.0847673π cm

The result can be shown in multiple forms

Exact Form

Area = 38781.0847673π cm

∴ Surface Area of Cone 9 cm by 43 m is 38781.0847673π cm2

Decimal Form

121772.6061695 cm2

∴ Surface Area of Cylinder 9 cm by 43 m is 121772.6061695 cm2

or

      Unit Conversion of 9 cm = 0.09 m

9 Centimeters is 0.09 meters

To convert Centimeter to Meter

we know that, 1 Centimeter = 0.01 Meter or
                         1 Centimeter = 1/100 Meter

To convert Centimeters to meters, divide the centimeter value by 100 .

Result in Meter: 9 × cm/m × cm/m

Cancel The Comman factor of cm

Result in Meters: 9/m

Divide the 9 by 100

Result in Meters: 0.09 meters

∴ 9 Centimeters = 0.09 meters


$(π⋅(0.09))$⋅ $(0.09$ + $\sqrt{(0.09)^2 + (43)^2})$ m

Move 0.09 to the left of π.

$(0.09π)$⋅$ (0.09$ + $\sqrt{(0.09)^2 + (43)^2}$

Simplify each term

Raise 0.09 m to the power of 2 and 43 to the power of 2

$(0.09π)$⋅$ (0.09$ + $\sqrt{(0.0081) + (1849.0)}$ m

Add 0.0081 m and 1849.0 m

$(0.09π)$ m ⋅ $ (0.09$ + $\sqrt{(1849.0081)}$ m

Multipy 0.09π m and 0.09 m

0.0081π m + (0.09π . $\sqrt{ 1849.0081 }$) m

Put the value of $\sqrt{1849.0081}$ = 43.0000942 in formula

0.0081π m + (0.09π . 43.0000942) m

Mulitply the 0.09π and 43.0000942

0.0081π m + (3.8700085π)

Add 0.0081π m and 3.8700085π m

The result can be shown in multiple forms

Exact Form

Area = 3.8781085π m

∴ Surface Area of Cone 9 cm by 43 m is 3.8781085π cm2

Decimal Form

12.1772606 m2

∴ Surface Area of Cylinder 9 cm by 43 m is 12.1772606 cm2