Created By : Abhinandan Kumar

Reviewed By : Rajashekhar Valipishetty

Last Updated : May 30, 2023


Enter the value of base radius(r)

Enter the Value of height(h)


If the cone Radius 35 foot by height 61 foot is 11575.5256475 foot2.


The surface area of a cone is equal to the area of the base plus the area of the cone. If the cone Radius 35 foot by height 61 foot is 11575.5256475 foot2.


    Surface Area of a Cone 35 ft by 61 ft in other units

Value unit
3.5282202 km2
2.1923399 mi2
3528.2202174 m2
11575.5256475 ft2
138906.30777 in2
3858.5085492 yd2
352822.0217358 cm2
3528220.217358 mm2

Steps:

Given that Base radius(r) = 35 ft and height(h) = 61 ft

Surface Area of a Cone = $(π⋅(Radius))$⋅($(Radius)$ + $\sqrt{(Radius)^2+(Height)^2}$)

Substitute the values of the radius r = 35 ft and height h = 61 ft into the formula. Pi (π) is approximately equal to 3.14 .

$(π⋅(35))$⋅ $(35$ + $\sqrt{(35)^2 + (61)^2})$

Move 35 to the left of π.

$(35π)$⋅$ (35$ + $\sqrt{(35)^2 + (61)^2}$

Simplify each term

Raise 35 ft to the power of 2 and 61 to the power of 2

$(35π)$⋅$ (35$ + $\sqrt{(1225.0) + (3721.0)}$ ft

Add 1225.0 ft and 3721.0 ft

$(35π)$ ft⋅$ (35$ + $\sqrt{(4946.0)}$ ft

Multipy 35π ft and 35 ft

1225.0π ft + (35π . $\sqrt4946.0$)ft

Put the value of $\sqrt4946.0$ = 70.3278039 in formula

1225.0π ft + (35π . 70.3278039) ft

Mulitply the 35π and 70.3278039

1225.0π ft + (2461.4731362π)

Add 1225.0π ft and 2461.4731362π ft

The result can be shown in multiple forms

Exact Form

Area = 3686.4731362π ft

∴ Surface Area of Cone 35 ft by 61 ft is 3686.4731362π ft2

Decimal Form

11575.5256475 ft2

∴ Surface Area of Cylinder 35 ft by 61 ft is 11575.5256475 ft2