Surface area of a Pyramid 10 foot by 93 foot by 23 foot Calculator
The Surface Area of Pyramid 10 foot by width 93 foot by height 23 foot is 3637.7326169 foot2.
The surface area of a pyramid is equal to the sum of the areas of each side of the pyramid. The base of the pyramid has area l x w , and sl and sw represent the slant height on the length and slant height on the width. If the Pyramid has a length 10 foot by width 93 foot by height 23 foot is 3637.7326169 foot2.
Surface Area of a Pyramid 10 ft by 93 ft by 23 ft in other units
Value | unit |
---|---|
1.1087809 | km2 |
0.6889662 | mi2 |
1108.7809016 | m2 |
3637.7326169 | ft2 |
43652.7914028 | in2 |
1212.577539 | yd2 |
110878.0901631 | cm2 |
1108780.9016311 | mm2 |
Steps:
The Surface area of Pyramid A = $lw+l$$\sqrt{(\frac{w}{2})^2+(h)^2}$$+w$$\sqrt{(\frac{l}{2})^2+(h)^2}$
Substitute the values of the length l =10 , the width w =93 , and the height h =23 into the formula for surface area of a pyramid
A=($10 \cdot93+10$$\sqrt{(\frac{93}{2})^2+(23)^2}$$+93$$\sqrt{(\frac{10}{2})^2+(23)^2}$) ft
Simplify each term.
Multiply 10 ft by 93 ft
A = $930.0 + 10$$\sqrt{(\frac{93}{2})^2+(23)^2}$$+93$$\sqrt{(\frac{10}{2})^2+(23)^2}$
Square root of $\sqrt{(\frac{93}{2})^2+(23)^2}$ is 51.877259
Put The values in Area Formula:
A= $930.0 + 10 \cdot 51.877259 + 93$$\sqrt{(\frac{10}{2})^2 + (23)^2}$
Square Root of $\sqrt{(\frac{10}{2})^2+(23)^2}$ is 23.5372046
Put The values in Area Formula:
A= 930.0 + 10 x 51.877259 + 93 x 23.5372046
Multiply 10 and 51.877259
A= 930.0 + 518.7725899 + 93 x 23.5372046
Multiply 93 and 23.5372046
A= 930.0 + 518.7725899 + 2188.960027
Add 930.0 and 518.7725899
A=1448.7725899 + 2188.960027
A= 3637.7326169 ft2
∴ The Surface Area of Pyramid length 10 ft , width 93 ft and height 23 ft is 3637.7326169 ft2