Surface area of a Pyramid 9 centimeters by 46 foot by 2 inches Calculator

Enter the Base(base 1)

Enter the Base (base 2)

Enter the height

The surface area of a pyramid is equal to the sum of the areas of each side of the pyramid. The base of the pyramid has area l x w , and sl and sw represent the slant height on the length and slant height on the width. If the Pyramid has a length 9 centimeters by width 46 foot by height 2 inches is 26354.8239911 centimeters2 or 4408.7424563 inches2 or 30.6162689 foot2

Surface Area of a Pyramid 9 cm by 46 ft by 2 in in other units

Value unit
0.2635482 km2
0.1637617 mi2
263.5482399 m2
864.6595798 ft2
10375.9149571 in2
288.2198599 yd2
26354.8239911 cm2
263548.239911 mm2

Surface area of a Pyramid 9 centimeters by 46 foot by 2 inches

Steps:

The Surface area of Pyramid A = $lw+l$$\sqrt{(\frac{w}{2})^2+(h)^2}$$+w$$\sqrt{(\frac{l}{2})^2+(h)^2} Substitute the values of the length l = 9 cm, the width w = 46 ft and the height h = 2 in into the formula for surface area of a pyramid Unit Conversion of 2 in = 5.08 cm To convert Inches to Centimeters we know that, 1 Inche = 2.54 Centimeters To convert Inches to Centimeters, multiply the inche value by 2.54 Result in Centimeters: 2 in × 2.54 × cm/in Cancel The Comman factor of in Result in Centimeters: (2 x 2.54 cm) Multiply 2 into 2.54 Result in Centimeters: 5.08 Centimeters ∴ 2 Inches = 5.08 Centimeters Unit Conversion of 46 ft = 1402.08 cm To convert Foot to Centimeters we know that, 1 Foot = 30.480 Centimeters To convert Foot to Centimeters, multiply the foot value by 30.480 Result in Centimeters: 46 ft × 30.480 × cm/ft Cancel The Comman factor of ft Result in Centimeters: (46 x 30.480 cm) Multiply 46 into 30.480 Result in Centimeters: 1402.08 Centimeters ∴ 46 Foot = 1402.08 Centimeters A=(9 \cdot1402.08+9$$\sqrt{(\frac{1402.08}{2})^2+(5.08)^2}$$+1402.08$$\sqrt{(\frac{9}{2})^2+(5.08)^2}$) cm

Simplify each term.

Multiply 9 cm by 1402.08 cm

A = $12618.72+9$$\sqrt{(\frac{1402.08}{2})^2+(5.08)^2}$$+1402.08$$\sqrt{(\frac{9}{2})^2+(5.08)^2} Square root of \sqrt{(\frac{1402.08}{2})^2+(5.08)^2} is 701.0584056 Put The values in Area Formula: A= 12618.72+ 9 \cdot 701.0584056+1402.08$$\sqrt{(\frac{9}{2})^2+(5.08)^2}$

Square Root of $\sqrt{(\frac{9}{2})^2+(5.08)^2}$ is 5.2968292

Put The values in Area Formula:

A= 12618.72 + (9 x 701.0584056) + (1402.08 x 5.2968292)

Multiply 9 and 701.0584056

A= 12618.72 + 6309.52565 + (1402.08 x 5.2968292)

Multiply 1402.08 and 5.2968292

A= 12618.72 + 6309.52565 + 7426.5783411

A= 18928.24565 + 7426.5783411

A= 26354.8239911 cm2

∴ The Surface Area of Pyramid length 9 cm , width 46 ft and height 2 in is 26354.8239911 cm2

or

Unit Conversion of 46 ft = 552.0 in

To convert Foot to Inches

we know that, 1 Foot = 12 inches

To convert Foot to inches, multiply the foot value by 12.

Result in Foot: 46 ft × 12 × in/ft

Cancel The Comman factor of ft

Result in Inches: (46 x 12 in)

Multiply 46 into 12

Result in Inches: 552.0 inches

∴ 46 Foot = 552.0 inches

Unit Conversion of 9 cm = 3.5433071 in

To convert Centimeter to Inches

we know that, 1 Centimeter = 0.393705 inches or
1 Centimeter = 1/2.54 inches

To convert Centimeters to inches, divide the centimeter value by 2.54.

Result in Centimeters: 9 × cm/2.54 × in/cm

Cancel The Comman factor of cm

Result in Inches: 9/2.54 in

Divide the 9 by 2.54

Result in Inches: 3.5433071 inches

∴ 9 Centimeters = 3.5433071 inches

A=($3.5433071 \cdot552.0+3.5433071$$\sqrt{(\frac{552.0}{2})^2+(2)^2}$$+552.0$$\sqrt{(\frac{3.5433071}{2})^2+(2)^2}) in Simplify each term. Multiply 3.5433071 in by 552.0 in A = 1955.9055192+3.5433071$$\sqrt{(\frac{552.0}{2})^2+(2)^2}$$+552.0$$\sqrt{(\frac{3.5433071}{2})^2+(2)^2}$

Square root of $\sqrt{(\frac{552.0}{2})^2+(2)^2}$ is 276.0072463

Put The values in Area Formula:

A= $1955.9055192+ 3.5433071 \cdot 276.0072463+552.0$$\sqrt{(\frac{3.5433071}{2})^2+(2)^2} Square Root of \sqrt{(\frac{3.5433071}{2})^2+(2)^2} is 2.6718451 Put The values in Area Formula: A= 1955.9055192 + (3.5433071 x 276.0072463) + (552.0 x 2.6718451) Multiply 3.5433071 and 276.0072463 A= 1955.9055192 + 977.9784354 + (552.0 x 2.6718451) Multiply 552.0 and 2.6718451 A= 1955.9055192 + 977.9784354 + 1474.8585017 Add 1955.9055192 and 977.9784354 A= 2933.8839546 + 1474.8585017 A=4408.7424563 in2 ∴ The Surface Area of Pyramid length 9 cm , width 46 ft and height 2 in is 4408.7424563 in2 or Unit Conversion of 9 cm = 0.2952756 ft To convert Centimeters to Feet we know that, 1 Centimeter = 0.032809 Feet or 1 Centimeter = 1/30.48 Feet To convert Centimeters to Foot, multiply the centimeter value by 30.84. Result in Foot: 9 × cm/30.84 × ft/cm Cancel The Comman factor of cm Result in Foot: 9/30.84 ft DIvide the 9 by 30.84 Result in Feet: 0.2952756 feet ∴ 9 Centimeters = 0.2952756 foot Unit Conversion of 2 in = 0.1666667 ft To convert Inches to Feet we know that, 1 Inches = 0.0833333 Feet or 1 Foot = 1/12 foot To convert Inches to Feet, divide the inche value by 12. Result in Foot: 2 × in/12 × ft/in Cancel The Comman factor of in Result in Feet: 2\above 1pt12 Divide the 2 by 12 Result in Feet: 0.1666667 feet ∴ 2 Inches = 0.1666667 feet A=(0.2952756 \cdot46+0.2952756$$\sqrt{(\frac{46}{2})^2+(0.1666667)^2}$$+46$$\sqrt{(\frac{0.2952756}{2})^2+(0.1666667)^2}$) ft

Simplify each term.

Multiply 0.2952756 ft by 46 ft

A = $13.5826776+0.2952756$$\sqrt{(\frac{46}{2})^2+(0.1666667)^2}$$+46$$\sqrt{(\frac{0.2952756}{2})^2+(0.1666667)^2} Square root of \sqrt{(\frac{46}{2})^2+(2)^2} is 23.0006039 Put The values in Area Formula: A= 13.5826776+ 0.2952756 \cdot 23.0006039+46$$\sqrt{(\frac{0.2952756}{2})^2+(0.1666667)^2}$

Square Root of $\sqrt{(\frac{0.2952756}{2})^2+(0.1666667)^2}$ is 0.2226538

Put The values in Area Formula:

A = 13.5826776 + (0.2952756 x 23.0006039) + (46 x 0.2226538)

Multiply 0.2952756 and 23.0006039

A = 13.5826776 + 6.7915171 +(46 x 0.2226538)

Multiply 46 and 0.2226538

A= 13.5826776 + 6.7915171 + 10.2420742