# Surface area of a Pyramid 10 foot by 93 foot by 23 foot Calculator

Enter the Base(base 1)

Enter the Base (base 2)

Enter the height

The surface area of a pyramid is equal to the sum of the areas of each side of the pyramid. The base of the pyramid has area l x w , and sl and sw represent the slant height on the length and slant height on the width. If the Pyramid has a length 10 foot by width 93 foot by height 23 foot is 3637.7326169 foot2.

Surface Area of a Pyramid 10 ft by 93 ft by 23 ft in other units

Value unit
1.1087809 km2
0.6889662 mi2
1108.7809016 m2
3637.7326169 ft2
43652.7914028 in2
1212.577539 yd2
110878.0901631 cm2
1108780.9016311 mm2

## Surface area of a Pyramid 10 foot by 93 foot by 23 foot

Steps:

The Surface area of Pyramid A = $lw+l$$\sqrt{(\frac{w}{2})^2+(h)^2}$$+w$$\sqrt{(\frac{l}{2})^2+(h)^2} Substitute the values of the length l =10 , the width w =93 , and the height h =23 into the formula for surface area of a pyramid A=(10 \cdot93+10$$\sqrt{(\frac{93}{2})^2+(23)^2}$$+93$$\sqrt{(\frac{10}{2})^2+(23)^2}$) ft

Simplify each term.

Multiply 10 ft by 93 ft

A = $930.0 + 10$$\sqrt{(\frac{93}{2})^2+(23)^2}$$+93$$\sqrt{(\frac{10}{2})^2+(23)^2} Square root of \sqrt{(\frac{93}{2})^2+(23)^2} is 51.877259 Put The values in Area Formula: A= 930.0 + 10 \cdot 51.877259 + 93$$\sqrt{(\frac{10}{2})^2 + (23)^2}$

Square Root of $\sqrt{(\frac{10}{2})^2+(23)^2}$ is 23.5372046

Put The values in Area Formula:

A= 930.0 + 10 x 51.877259 + 93 x 23.5372046

Multiply 10 and 51.877259

A= 930.0 + 518.7725899 + 93 x 23.5372046

Multiply 93 and 23.5372046

A= 930.0 + 518.7725899 + 2188.960027